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Exascale Computing Project : application development
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PRE AND EXASCALE SYSTEMS IN 2022
Need to make the code work on all machines
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Argonne Aurora

Oak Ridge FrontierNERSC Perlmutter

Argonne Polaris

Make QMCPACK run well everywhere



ELECTRONIC STRUCTURE METHODS
QMC can be the new sweet spot
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PETASCALE TO EXASCALE CHALLENGE
How large problem can we solve?
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TiO2 polymorphs

216 atoms with 1536 electrons, 10 meV/f.u.

YL et al. New J. Phys. 18 113049 (2016)

Metal organic framework

153 atoms with 594 electrons, 10 

meV total energy.

A Benali, YL, et al. J. Phys. Chem. C, 

122, 16683 (2018)

What is next?

1. Solve faster and more 

petascale problems

2. Solve much larger 

problems

1k atoms

10k electrons



QMCPACK
◼ QMCPACK, is a modern high-performance open-

source Quantum Monte Carlo (QMC) simulation code 

for electronic structure calculations of molecular, quasi-

2D and solid-state systems.

◼ The code is C/C++ and adopts MPI+X 

(OpenMP/CUDA)

◼ Monte Carlo: massive Markov chains (walkers) 

evolving in parallel. 1st level concurrency. Good for MPI 

and coarse level threads.

◼ Quantum: The computation in each walker can be 

heavy when solving many body systems (electrons). 

2nd level concurrency. Good for fine level threads and 

SIMD.

◼ Math libraries: BLAS/LAPACK, HDF5, FFTW
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DIFFUSION MONTE CARLO SCHEMATICS
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Possible new configurationsOld configurations Random walking

New configurations

Population

w=0.8

w=1.6

w=2.4

w=0.3

Load balancing 

communication

Walker



PARALLELIZATION AND GPU PORTING



WALKER BASED PARALLELISM

▪ Weak scaling efficiency 99% on 2/3 Mira and 95% on almost full Titan.

▪ Weak scaling, fix work per node. Strong scaling, fix the total number of samples.

▪ Equilibration excluded.

Works extreme well on petascale supercomputers
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MAPPING CONCURRENCY TO PARALLELISM

▪ Walkers Nw are not data parallel but task parallel

– Workload per electron move depends on accept/reject. GPU

– Workload per step moving all the electrons is roughly equal. CPU

▪ Electrons are data parallel

– Naturally, Ne vector computation utilizing SIMD and SIMT. CPU/GPU

– Kernels are O(Ne
2-3) per sample. Large Ne CPU. Small Ne GPU.

▪ Need a tailored approach for performance portability beyond 

programming models.

▪  ore  etai s in Hipar   pub ication “A High-Performance Design for 

Hierarchica  Para  e ism in the Q CPACK  onte Car o co e” 

https://arxiv.org/abs/2209.14487

Monte Carlo can be a challenge for parallelism
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Friendly

Unfriendly



OPENMP OFFLOAD GPU IMPLEMENTATION

▪ Use portable OpenMP target feature

– Portable on NVIDIA, AMD, Intel GPUs. Fallback on CPU as well.

– Multiple compilers. GNU, Clang, AOMP, NVHPC, OneAPI

▪ Multiple CPU threads to launch kernels to GPUs

– Maximize GPU utilization. Overlapping compute and transfer by OpenMP.

▪ Specialized in CUDA/HIP to call NVIDIA/AMD/INTEL accelerated libraries.

– cuBLAS/cuSolver, hipBLAS/hipSolver, MKL

▪ C++ templates to cover real/complex and full/mixed precision cases.

– We use C++17 to keep our code concise.

A bit more software technology to handle GPUs 
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PERFORMANCE ON SUMMIT

12

▪ Porting starts in 2019.

▪ Steady performance 

improvements 3.10 to 

3.14(dev)

▪ Close or exceed CUDA 

performance

▪ There are still room to 

improve the performance.

▪ Passes tests, very usable in 

production



V100 VS A100

13

▪ GPU acceleration is significant

▪ The larger HBM helps 

throughput. Very similar to ML.

▪ A100 is almost 3X when 

running 256 atom problem.

▪ 16 GB is the bottleneck on 

V100



LESSONS LEARNED SO FAR

▪ Understand how to make CPU and GPU work efficiently

▪ Analyze the compute pattern and map the existing concurrency to proper 

parallelism given by the hardware

▪ OpenMP + vendor libraries strategy works

– ~100 CUDA kernels down to ~10 CUDA kernels + ~10 offload regions

– Very maintainable code with decent performance

What is needed for a performance portable code
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MY OPINION ABOUT GPU PORTING



DATA MOVEMENT IS THE KEY OF PORTING

▪ Data locality is the top priority

– Interconnect is slower than memory. We write performant MPI code

– Memory is slower than cache. We implement cache friendly algorithms.

– CPU-GPU bus is slower than GPU memory. We need to first worry about 

data transfer.

▪ Avoid any programming model which

– Ignores the performance difference from host and GPU memory spaces.

– Doesn’t provi e exp icit  ata movement contro 

▪ GPU 101 teaches kernel programming. It is not the key.

▪ Managing data movement requires understanding the whole algorithm and 

implementation. This needs domain expert knowledge.
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MANAGE MORE LEVEL OF PARALLELISM

▪ At least two level of parallelism

– CPU has core+SIMD

– GPU has SM+SIMT lanes

– In QMCPACK we have CPU threads + two level inside GPU kernel

▪ Reduction operation plays a key role in scientific computing

– It is about locality and hierarchy
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CUDA LANGUAGE IS NOT THE BEST CHOICE

▪ Must be protected under macro. Macro means more test variants needed.

▪ Doesn’t run on hosts without GPUs 

– Running and debugging on host are lot smoother and should catch most user 

errors

– Host tooling are richer. Address and thread sanitizers, code coverage.

▪ Offload models are more appealing: OpenACC/OpenMP

▪ Restrict it to only serving library calls.

▪ Scientist needs to spend time on methods, algorithms. Leave the engineers to 

worry absolute performance.

For scientists
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OPENACC AND OPENMP

▪ OpenMP has a richer feature set

▪ OpenACC is more developed for NVIDIA GPUs

▪  he nee e   eve opers’  now e ge is the same for GPU programming

▪ They are not necessarily interchangeable in syntax.

▪ Choose one based on your production environment and programming language.

▪ Keep in mind that compilers are never perfect. They have bugs but be kind to 

developers. Directive based programming model eases the burden of code 

developers and shifts that to compiler developers.

▪ CUDA  oesn’t have a re uction!!!!

Competitors and siblings
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SUMMARY



SUMMARY

▪ After a careful redesign of QMCPACK, we have new performance portable 

implementation, and it is the second time of GPU porting.

▪ OpenMP + vendor library strategy works well on NVIDIA GPUs and we are 

expanding the list of supported GPUs from different vendors.

▪ GPU porting is a chance to force  esigning an  imp ementing better co e  Don’t 

miss the opportunity.




